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The subject of present investigation is the diffraction of a shock wave of arb- 
itrary intensity on a thin wedge moving at a supersonic speed. The plane 
of the shock wave forms an almost right angle with the symmetry plane of 
the wedge. The interaction between the fronts is assumed sporadic. 
Studying the pressure perturbation along the front, a singularity of the type 
similar to that appearing when a weak pressure jump is diffracted on a 
wedge of finite opening angle with an attached shock, is discovered. This 

case was dealt with in 111. The boundary value problem which is solved 
here using the results of [Z, 31 enables us to find the pressure perturbations 
at the wall and along the shock front, and obtain the expression for the 

front in terms of elementary functions, The above problem was analyzed 
for the case of regular interaction in [3] , where a method of generalizing 
the solution to the case of sporadic interaction was also suggested. The me- 
thod however turned out to be impracticable. 

1. A thin wedge moves through a quiescent perfect gas at a supersonic speed 

adim where a, denotes the speed of sound in gas. The half apex angle of the 
wedge e is a small parameter of the problem. At the instant t = Othe edge of the 
wedge encounters the front of the plane shock wave of arbitrary intensity propagating 
at the speed a&f The plane of the shock wave forms an angle X = n ! 2- 6, 
which is nearly a right angle, with the plane of symmetry of the wedge (angle 6 is of 
the. order of a ) . 

The self-similar plane motion arising at t > Orepresents a perturbation in a hom- 
ogeneous flow behind the shock wave. 
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Fig. lsr depicts the flow in the plane perpendicular to the edge of the wedge. The arc 
of the Mach circle the center E of which coincides with the gas particle lying at the 
tip of the wedge at the instant t = 0 forms, together with the segments I’F’ of the 
shock front and the partD’P’of the wall, a boundary of the region of inhomogeneous 
perturbations. The latter propagating at the speed al in the region 1 will arrive at 
the wavefront, but will go no further, merely causing a small distortion in the segment 
PP. The region of diffraction I’B’L)‘EF’J’ is adjacent to two regions of homo- 
geneous perturbation, on the left the region 5 -NB’D’, and on the right the reg- 
ion 2 separated from the region ooby the front of the weak pressure jump. Diffraction 
of the shock wave is made more complicated by its interaction with a ptane weak 
pressure jump caused by the supersonic flow past the wedge. Below we investigate the 
range of the initial values of the parameters of the problem in which this interaction 
cannot be rqular. 

ai. m:m 

N a 
Fig. 1 

It is expedient to choose a system of physical coordinatesx’, y’ stationary with 
re+ect to the gas in region I so that they’- axis coincides at the instant t = 0 with 
the shock wavefront, while the x)-axis passes through the wedge tip N in the direction 
of the shockwave. The selfsimilar dimensionless coordinates can be obtained from the 
physical coordinates using the farmulas 5 = 5’ 1 art, and Y = Y’ / 62,t. 

Since the perturbations are small, we have the follow~g boundaries of the region 
of diffraction (Fig. lb) : segment I#’ of the unperturbed front extended to its inter- 
sectian with t&e x -axfss, SegmerWDof the 2. -axis, and the arcDBI0f a unit circle 
with its center at the coordinate origin. The pressure ii, density fi and the compon- 
ents d and g of the velocity vector projected on the x and y -axis are assumed to be 
nearly e<lual, within the region described above, to the corresponding values in the 
region 2. 
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j5 = p1 + eplalap, p = p1 + ep,p, ii = ealu, V = ealv 

Here E!p, Ep, eU and ev denote the dimensionless perturbations. The flow generated 
by the shock wave is determined by the quantities PI / pm al / a,, PI / pm, and Ml. 

The coordinates of the points B (xl, yl), I (x0, y,), G (q,, yc), and F(z,, 0) 
are connected with the numbers M and M, [3] in the following manner 

(here x is the polytropic exponent ) : 

~1 = - (MI + Mmam / al)-‘, yi = VI - xia (i = o, 1) w 

The latter formula yields the following relation connecting M and M, corresponding 
to the given position of the point G of intersection of the fronts : 

M, = [ Mawa /ala + yc fyca f (Ma - 1) am2 / &‘I / (YG’ - am2 / al:) 

hoa 
2.4 

The above expression is represented more 
conveniently in graphical form as a relation 
connecting the quantities A and A, (which 

2.2 

2.0 

are the ratios of the velocities of the shock 

wave and the wedge to the critical speed of 

sound in the regionoo). The range of values 

31, and A., relative to the sporadic inter- 

actions corresponds to the region lying above 

1.6 2J 2.4a 
the lowest solid line along which yo* = go/ 

Y, = 1 (Fig. 2). The remaining thick 

Fig. 2 lines correspond to the values Of‘go*equal to 
0.8, 0.6, 0.4, and 0.2 (x = 1.4). 

If we fix 31, and bring A, towards v(% + I)/(% _ I), then the point G will tend to 
some position at a finite distance from the wall. The point will approach the wall in 
an asymptotic manner, if A, Am --f v(x + I) / (X - 1) simultaneously. 

2. We know that after passing to the spherical coordinates 2 = r cos 8,y= r sin 6 
and applying the Busemann transformation R =: (1 _ (1/i _ $)/r the function p 
will satisfy, within the region of perturbations, the Laplace equation, Its normal der- 
ivative on the segmentDFof the boundary will be equal to zero, while along the arc 

segments IB and BDthe pressure will be constant, p = 0 on IB and p = p b on BD 

(Ml + M,a, I ada 
pa = 1/(M, + MoDa_ 1 a#---1 

Ml818 
’ $- MI -b M,a, Ial > 

Here it is essential that the second derivative of the function p along the normal to the 
tangential discontinuity be continuous as shown by Smyrl in [3] . 

Linearizing the laws of conservation at the shock front the equation of which is 

.x = z.l + ef (I/), we arrive at the boundary values for the functions U, v andp on 
the segment IF of the region’s boundary, the expressions for which differ from the for- 
mulas (2.1) of [l] (in whichM,must be replaced by J$) in the sign of the argument of 
the 8 -function only. The quantities h,, h, and hp appearing there amme the form 

r31. 
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h u=- 
;; M,, hp _ x”;i ;; 4M + (2M2-x + ‘) M0‘9 

v M,a-- 1 

The expression for the perturbatipns in II, 8 and ,P on the segment fF yield the 
boundary conditions for the function,p only, zind a relation used below to normalize 
the solution which differs from the formulas (2.2) and (2.3) of [l] in the sign prece - 
ding the & function. 

The Busemann transformation which co verts the segment 1~ of the boundary 
into a circular arc in the plane 5 = R exp i 6 ’ leads to a boundary condition for the 
pressure along this arc which also differs from the expression (2.5) of [l] in the sign 
appearing in front of the 6- function. Superposition of the conformal mappings of the 
region of diffraction onto the upper half of the plane 0 = % i- iq has the form [2] 

0 = (2” + ze2) / 2, 2 = i (550 - 1) / (t - 501, 5 = to + iy, 

Here the wail maps onto the segment -1 ( E ( 1, the front and the Mach are map 
onto the rays 8 > 1 and E < ___I, while the points B and G acquire the co - 
ordinates 

EB = - [(I - 2051)~ + y,2y,al / [(I - .&)’ - yo2y,‘l, Y@ = 0 

EG = (30~ + #G”> / ($/o’ - YG”), YG = 0, 

Taking into account the conditions on all parts of the contour we can complete the 
formulation of the Riemann-Hilbert problem for the analytic function r = 8p / dq i- 
idp / dFj in its closed form with the following single relation along the real axis 7 = 0 

p WP / ari - Q(E)~P I $8 = LB (E - EC) - P,h (E - %A (2.3) 
where we have 

P (8 = 6 (E& I,@ Q (El =i, 0,1 for E > 1, --1 < 5 < 1, EC--I 

b f%) = &I + Yaw% --1 / (YlY2 - 5 + 1) 

Y 1,2 = '1/&M {M f (M2 --1)[M2 + 2 / (x -1)k’~~) 

The quantity 8 is defined by the formula (2.4) of Cl] in which g = PG. 
Below we shall denote b (8~) simply by 5 . 

3. In the case when the first term is absent from the right-hand side of the 
bcundary condition (2.3), the solution was obtained by Lighthill in [2] and subsequently 
utilized in [3] in the course of studying the same problem with regular interaction of 
the wavefronts. If the whole of the right-hand side of (2.3) equals identically to zero 
(homogeneous problem), the solution is given by the expression 

CD (CO) = [VC$ - 1 (yl - if/o - l&y2 - ido - 111-l 

Consequently, we can write the solution of the initial inhomogene~s problem ( 2.3 f 
in the form [4,5] 

r (0) = @ (w)IK, (CO - %B)-’ + & (0 - %C)-’ + K’s] 

Kl = @a fwtn + r/l - EBKV, + vi - %B)V%B2 - 1 

K2 = @ f n)(%G --1 - Y&f%G2 - 1 
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On the real axis this solution becomes 

r+ (8 = a+ (El 
[ 
&- + -&- + & 

B G 1 - Q&J (E - b) - 
n 

Separating the imaginary part of this expression, we obtain the derivative of the func- 
tion p along the wall image, and of the shock wave front 

an K, (E; - E&l + & @a - L$r+ &I (W 
aS=- - r/t - P (y, + V-/1) (Y2 f 1/1--c;) 

The normalizing condition 
/ aD dE h hub 

f .zy= v 

__+M,-M++p) 

YG 
1 

in which the integral is understood as Cauchy principal value, yields an expression for 
the constant Ks, which is cumbersome and therefore not given here. 

4. Integrating the expressions (3.1) and (3.2) we obtain the pressure perturbation 
at the wall and along the shock front (formulas (4.1) and (4.2) respectively) in terms 
of the elementary functions 

Here 

(4.2) 

c, = 4% TX+ ?2 y'%2-2 pb+ S(& 2 

t nI/y+2 Yl---2 Ys-Y2 
0 --ZOmG*+(y~$;;B 

T 

c2 _ 2% (%'I+ ?rdh'a-i- I'S) 23 2 s 
51 (n - ys) (ys - ysf ’ C‘s = -ii- ’ c6 = -;i- 6% + 1 

Co = - (l/n) &‘(b2 + 1) = (s/n) ycfy,’ - YG’, yc* = yG/yo 

s = S/[(b2 + 1) (Ay$ - z,B)], K. = - M, (1 + 6/e) - 
23 @P -I- s/(b2+~)~J~G 
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Y3 = VI -En, 

VYG-Y)= 1 
1 

0, 

, 

It should be noted that if 

Y4 = - ya, dl=c~, da=ca, d3=C3_cCqr 

Y>Yc 

y<YG 

x > ‘/37 then for th e V al UeS of M connected with X in 
163 by the necess& inequality we have ya2 - 2 < 0 . In these cases the symbol 

aretg appearing in the expressions (4.1) and (4.2) in the terms containing the co- 

efficients c, and ds must be replaced by Arth, yz2 - 2 by 2 - y22 andy, - l/z 

by r/z - y2. 
From (4.2) we see that the pressure perturbation along the shock wavefront con- 

sists, as in the case of diffraction which was dealt with in [l] , of a smooth function, a 

pressure jump of magnitudes / (b2 i- 1) and a logarithmic singularity at the point G. 

In Fig. 2 the thin line depicts the dependence between the characteristic para - 
meters A and h, of the problem under consideration, corresponding to the bifurcation 
for s = 0 when the flow in the small neighborhood of the point % ,G consists of homo - 

geneous streams separated by the tangential discontinuity. The bifurcation curve co- 

rresponds to a part (lower) of the bifurcation curves characterizing the flow in the diff- 
raction problem in [l] . 

Bifurcation of the second kind in which only the pressure jump is preserved, occurs 

when the triple point r? coincides with the point 1 (YG = Y,,),. The lower solid line 
in Fig. 2 corresponds to these cases. The logarithmic term is absent from the solution 
also when YG = 0 (this case is depicted in [l] by the middle thick line in Fig. 2), but 

in the present case of a shock wave and a thin wedge, this can never be realized. The 
coordinate YG tends asymptotically to zero when M’and M, both increase simult - 

anecusly without bounds. 

The bifurcation of the third kind (only the logarithmic singularity remains) which 

occurs when yo = Jf/z,,B/A, is depicted in Fig. 2 by the dashed line. It should be 

noted that all three curves in Fig.2 described above emerge from the samesingle point. 
When the wave interaction is regular (Yo > yO), we find that a refracted wave- 

front appears which touches the Mach arc and regions 3 and 4 are formed (Fig. 1 of [3]) 

sepasated by the tangential discontinuity. It can be shown that in this case 

pa = p4 = (a$? - Ayc2)S / (AYG~ - %B -k YG vYG2 - YCJ’ ) (4.3) 

The formulas obtained in [3] for the pressure at the wall and along the shock 
front under the regular interaction, the region lying below the lowest solid line in the 

h, A, -plane corresponding to this interaction , pass smoothly as YG + Yo to the 

formulas obtained from (4.1) and (4.2) for YG = Yo . The regions 3 and 4 contract to 

the point 1, and from (4.3) we see that pa = p4 -+ (- S). Thus the solution of the 
problem in question and solution of the problem with regular interaction pass smoothly 
into each other as the wave interaction changes its character. 

5. The boundary condition showing how the pressure perturbation at the front de- 

pends on its shape, can be regarded as a differential equation in f (Y) 

f - Yf’ = (B / Ml) [P (Y) - be (YG - Y)] (5.1) 

in whichp (Y)is given by (4.2). Its solution with the boundary condition that f = 0 
when y = y, has the form 
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f(Y) = $ p (Y> - F (Y - yC> In 1 Y - YG 1 - 

S 
hp+ izjz 

YG --Y 
-6(Yc -Y) yc 1 

(5.2) 

F (y) = F1 (Y) - (Y/Y,)& (Y) 
We can asmme here that the function F1 (y) is given by the formula?4.2) with its last 
term omitted, and the denominator of the penultimate term consisting of the modulus 

of the difference of squares replaced by the sum of these quantities 

Fa(y) = f, “‘fyy 2 di arc&i yi Tyka f 
i=1 

?h’(?l + YG) 
$fln _ 

(!,G fd - Y2 + Y v/y? - Y# 
+ 

(i+;)++(h,+b&)$ 

At the point 1 the perturbed front comes into contact with the vertical since 

f’ 043) =o, i.e. just as in the problem analyzed in [l], the shock wave: does 

not undergo a break at the point of its intersection with the Mach arc. 

Two last terms in (5.2) indicate the character of the singularity appearing in the 
shape of the front near the point G where the slope of the front can be expressed by the 

following approximate formula : 

f’(Y) = &[(h,+ &) 6&C -_Y)-CcoYolnIy-_GIfCOnSt 
T 

In the case of bifurcation when the quantities 5’ and cO vanish, f’ is found to have 
different values on different sides of the point G, i. e. the shock wavefront undergoes 
a break at the triple point. We also have a break in the front when the point G coin- 

cides with the point I of intemection of the shock front with the Mach arc(in this case 

CO= 0). lnall the remaining cases tne values of the derivative of the front’s shape and of its 
CUrVatUre tend t0 infinity as y + yG, and there is no break in the front. We find how- 

ever, that the values of f’ at two points symmetrical with respect to G differ fromeach 

other by a finite amount. This difference can be assumed to represent a jump in the 

value of the angle of inclination of the shock front relative to the boundaries of some 

neighborhood of the point G Cl] . 
Finally, at the point J’ we have f’ ( 0) = -(I + iQe), i. e. as expected, the front 
is normal to the wall. 

Note. In the case of a sporadic interaction the solution of the linear problem 
must have a singularity at the point G, and this aspect was not recognized by Smyrl in 
Sect, 8 of [3] where he attempted to generalize the solution for the regular interaction 
to the case discussed above. He assumed that the fimctionf (#can be written in the 
neighborhood of the point G in the form of a linear function f (Y) = f (YG) - (YG - 

Y) &.2/E, provided that the tangents to the shock wave form at the triple point, with 
the Y-axis, the angle h1 above the point G and 6, below G. These linear functions 
were then substituted into the formulas analogous to the formulas (2. 1) of [l] in order 
to find U7 v and P separately for Y >‘YG and Y < YG. 
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The limiting values ofu, Yaud p thus obtained were then supposed to satisfy the con - 
itions at the tangential discontinuity, and the conditions would lead to an expression 
for the break in the front 61 - 6s in terms of f (YG). This would give the value’of 
the jump in the velocity v which could be taken into account in the normalizing con- 
dition, and the generalization of the problem concluded by obtaining the quantity f (YC) 
after establishing the form of the front. 

This method however leads to a con~adiction, since the substition of these limit- 
ing values into the conditions at the tangential discontinuity yields an overdetermined 
system of two equations with a single unknown d, - 8, which has a solution only 
in the case of bifurcation, 

Fig. 3 

The flow chart shown in Fig. la can be regarded as the limiting state of an asym- 
metric bridging configuration with two triple points 1’ and G’ joined by the front J’G’. 
Analysis of the solution carried out in Sect. 4 and 5 and the computations described in 
Sect. 6 indicate a certain quantative redistribution of the perturbation along the front, 
their considerable gradients in the neighborhood of the triple point G’ and their smooth 
disappearance near the other triple point I’. 

6. below we show the properties of the perturbations obtained for various values 
of M,. The dependence of the wall pressure p on z* = (1 -I- x)/(1 + Q,) (0 < X* < 1) 
and of the pressure along the front and the shape of the front on Y’ = Y/Y, (0 d y* < 1) 
are shown in Fig. 3 (with (x = 1.4) for M = 5 and d = O).The values of M, are 
shown near the corresponding curves. 
For the value of M, = 3 they correspond to a regular interaction (Yo* = 1.13). 
The shape of the front is indicated by thick lines. The valueM,= 5.54corresponds to 
a bifurcation and the jump in the pressure along the front changes its sign at M, = 
4.56. We see that when the shock wave is met by the wedge at large values of M,, 

the pressure perturbations increase and their slopes become steeper with increasing x+ 
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near the front. The maximum displacement of the latter corresponds to the neighbor- 
hood of the pressure singularity. 
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Centered waves and strong discontinuities in a perfectly conducting mag - 

netizable incompressible medium are investigated. It is shown that inshock 
waves in such medium the magnetic field tangential to the discontinuity 

plane and the magnetic induction increase, and the magnetic permea - 

bility decreases. In centered waves the tangential magnetic field and mag- 
netic induction decrease. The problem of disintegration of an arbitrary 
discontinuity in a magnetizable perfectly conducting incompressible 

medium is solved by constructing diagrams in the plane of components of 
the tangential velocity initial shock. The diagrams make possible the det- 

ermination of the combination of waves and discontinuities formed at 
disintegration. 

Let at the initial instant of time t = 0 parameters B,, El,, v,, and T become 
discontinuous in the plane z = 0. 

Fig. 1 

If the laws of conservation are not satisfied at 
the discontinuity, the latter cannot exist, and it is 
necessary to determine the motion of medium at the 
following instants of time. The self-similarity of the 
problem implies that the motion must cons&t of a com- 
bination of shock waves S, centered waves 8, rota- 
tional Alfven discontinuities A and a contact 


